
Thermochim~ca Acta, 164 (1990) B-305 
Elsevier Science Publishers B.V., Amsterdam 

285 

A NEW ~C~Q~ FOR DESTINATION OF THE POSSIBLE 
REACTION ~C~NISM FROM NON-ISO~~L 
THERMOGRAVIMETRIC DATA 

ABDULLAHI ABDU ZURU *** *, ROY WHITEHEAD and DAVE L. ~RIFFITHS 

Department of Chemistry and Appiied Chemistry, Uniuersity of Salford, 

Salford MS 4 WT (Gt. Britain) 

(Received 11 December 1989) 

ABSTRACT 

A new technique for the selection of the most probable reaction mechanism utilising 
non-isothermal thermo~a~met~c data has been developed. The proposed method utilises the 
isoconversional activation energy, i.e. the apparent activation energy evaluated using the 
isoconversional method, as an indicator for distinguishing between mechanism types. An 
added advantage of this novel technique is that it allows an accurate recognition of 
non-isokinetic processes. Our investigation also reveals that the constancy of the pre-ex- 
ponential factor over a range of heating rates is not peculiar to a single reaction mechan&m; 
consequently, it is not a sufficient criterion for establishing the most appropriate reaction 
mechanism. This work also demonstrates the sensitivity of the apparent activation energy and 
pre-exponential factor to the accuracy of temperature measurement and re-emphasises the 
inaccuracy of drawing conclusions about reaction mechanisms using the correlation coeffi- 
cient as the sole criterion. 

INTRODUCTION 

The difficulties of evaluating kinetic parameters for solid state processes 
from rising temperature thermogravimetric data have led to the publication 
of numerous conflicting kinetic equations and calculation techniques. This 
has invariably sparked off debate within the scientific community thus 
compelling the International Confederation for Thermal Analysis (I.C.T.A.) 
to appoint a sub committee on kinetics [l] under the chairmanship of 
Professor J.H. Flynn to look into the issue. 
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BACKGROUND TO THE PROBLEMS 

To describe the kinetics of a process, it is desirable to know the depen- 
dence of the reaction rate on the parameters which characterise the system. 
Unfortunately, in the case of heterogeneous systems there is hardly a single 
process that can adequately describe the rate-limiting step in the entire 
region of investigation. To circumvent this difficulty, experiments should be 
designed in such a way that would allow the investigation of a single partial 
process. Provided this can be achieved, it can be assumed that the rate of the 
process is a unique function of temperature (T) and degree of conversion 
(a), in which case the rate is formally expressed as 

rate = da/dt = k( T)f( a) (1) 

or according to ref. 2, as 

rate = da/dt = k( T)f( a)$(a, T) (2) 
where $( (Y, T) is equated to unity for isokinetic processes, k(T) is a 
temperature dependent rate constant, f(a) is the conversion function which 
is assumed to describe the reaction mechanism and 1y is a dimensionless 
quantity referred to as the degree of conversion. 

To solve the differential equation given in eqn. (1) above, it is imperative 
to know: the functional dependence of the rate constant on temperature, 
k(T); and the analytical form of the conversion function f(a). 

The various approaches employed to obtain this information have led to a 
proliferation of equations and calculation techniques for the determination 
of kinetic parameters from thermogravimetric data. 

The complete success achieved in extracting similar information for 
homogeneous systems was so overwhelming that concepts and reaction 
mechanisms used in homogeneous kinetics were used to treat kinetic data 
for heterogeneous processes under non-isothermal conditions. Consequently, 
the validity of the Arrhenius equation was presumed and the thermal 
dependence of the rate constant, k(T), is accordingly expressed as 

k(T) =A exp( -E/RT) (3) 

or according to some authors [3,4] 

k(T) = ATb exp( -E/RT) (4) 

where A is the “pre-exponential factor”, E is the “apparent activation 
energy” and b is a constant. In this communication, eqn. (3) will be used 
because, in our opinion, the constant b only complicates an already difficult 
problem and, moreover, there is no satisfactory method for its determina- 
tion. For a linear temperature program, eqn. (3) can be combined with eqn. 
(1) to obtain 

da/dt = A/P exp( - E/RT)f( a) (5) 

where /? is the heating rate in o C mm’. 
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Equation (5) is the fundamental equation that forms the basis of both the 
differential and integral methods of analysing thermoanalytical data ob- 
tained from thermogravimetric curves. It is also the focus of most of the 
controversies in non-isothermal solid state kinetics. The major areas of 
disagreement amongst thermal analysts are: 
(a) the consistency of the calculation techniques currently in use for evalua- 

tion of the apparent activation energy and pre-exponential factor [5]; 
(b) the appropriateness of the existing methods for elucidation of the most 

probable reaction mechanism describing the process [5]; 
(c) the existence or otherwise of the total differential of ar =f(t, T), in 

other words the relationship between da/dT and dcu/dt [6]; 
(d) the validity of expressing the thermal dependence of the rate constant in 

terms of the Arrhenius equation [7-141. 
We shall address ourselves to items (a) and (b) leaving items (c) and (d) for 
further consideration in a subsequent communication. It is widely accepted 
within the thermal analysis community that the parameters E and A in eqn. 
(5) have little physical significance apart from being empirical constants 
[l&16]. This view is held because of the following observations: (i) the values 
of these parameters obtained for the same substance by different workers, 
and sometimes by the same worker, often vary widely [17,18]; (ii) these 
parameters have been reported to vary with experimental factors such as 
heating rate, furnace atmosphere, packing density of sample, shape and 
nature of crucible, sample size and even the history of the sample prepara- 
tion [19-211. 

In our opinion the above observations are at the root of the current 
debate regarding the non-isothermal kinetics of solid state processes: it was 
on these grounds that researchers started to question the rationale of using 
the Arrhenius equation and the rate expression as given in eqn. (1). 

METHOD FOR EVALUATION OF THE APPARENT ACTIVATION ENERGY 

Of the various calculation techniques that have been reported, we con- 
sider the isoconversional method as the most suitable despite Zsako and 
Arz’s criticism of this method [17]. The isoconversional method was first 
formulated independently by Ozawa [22] and Flynn and Waal [23]. Its 
attraction derives mainly from its ability to give activation energy values 
without the necessity of presuming the analytical form of the controversial 
conversion function f(a). A published method [24] based on the Ozawa [22] 
technique and an improved version of the Coats-Redfern equation [25] will 
be utilised in this work. The details of the calculation technique are given 
below. 

In order to improve the Coats-Redfern equation [25] for use with the 
Ozawa technique [22], Fatemi [26] modified and transposed the Coats-Red- 
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fern equation to get 

where (p(E, Tj) is an asymptotic series given as: 

(-l)“(n + l)! 
rp(E, ,ji=++...+ Xfi 

For efficient evaluation of the above series, we combined two successive 
terms to give a new series as follows 

+‘(E, Kj) = (1 - 2/x) + $-4/x) + 
(2n -t l)! 

X2” ( 

I_ 2n+2 
X ) (8) 

Replacing +f E, Z&) with tp’(E, qj) in eqn. (6) gives 

A term in the new series is the sum of two terms in the former series; 
~nseque~tly~ each term in the new series is smaller in magnitude than either 
of its components in the original series. Hence, not only has this eliminated 
the alternating sign between terms in the original series, but also may 
accelerate the attainment of the limiting conditions, that is, in reaching the 
negligible term of the series or the approach to the asymptotic condition. 

Although eqn, (9) contains the apparent activation energy (E) in an 
asymptotic series, it is easy to solve for E using an iterative technique. 
Basically, the iterative procedure consists of two loops. The iteration is 
initialised by taking E: = lOlo in Cp’( E, qj) which then becomes unity: a first 
appr~~mation to E is thus obtained which is then substituted into eqn. (9). 
At this point, a second loop is used to evaluate the sum of the asymptotic 
series as described in the next paragraph. The sum is then r~ubstitut~ into 
the main loop and the equation solved to give values of the left-hard-side 
corresponding to each reciprocal temperature (l/Kj) and heating rate (&), 
for the jth degree of conversion, aj. A plot of the left-hand-side against 
l/qj is made and the best straight line is drawn through the points using a 
least-squares fit analysis. The apparent a&tivatio~ energy (E) is then calcu- 
lated from the slope ( -E/2.303 R) of this line. The difference between the 
newly evaluated activation energy and its predecessor is compared with an 
assigned value of the acceptable truncation error (ERROR = lo-“). If this 
difference is greater than ERROR, the current activation energy is recycled 
as the approximate value and the computation repeated until the condition 
is satisfied and we obtain the activation energy for the given degree of 
conversion aj. The whole procedure is repeated for each degree of conver- 
sion chosen and the mean is calculated and reported as the apparent 
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activation energy for the particular process. In subsequent references, this 
mean apparent activation energy will be called the isoconversional activation 
energy. 

The sum of the asymptotic series is obtained by splitting the sum into the 
first term plus the sum of the remaining terms. The first term is stored and 
each subsequent term of the series is calculated from its predecessor using 
an iterative loop. Once a term is calculated its magnitude is compared with 
the truncated error; if it is larger than ERROR, it is added to the store and 
the next term is calculated and tested similarly. This sequence of computa- 
tion is repeated until a term is obtained with a magnitude less than or equal 
to ERROR; the loop is then terminated and the sum is used in solving eqn. 
(9) as described above. 

GENERATION OF THEORETICAL DATA 

To test the consistency of the above technique, theoretical data were 
generated as follows. Equation (9) is generally quoted as 

g(4 = W/WP(X) (10) 

where by definition 

P(X) = /“Xm2 eCxdX 
00 

(12) 

X = E/RT 0% 

TABLE 1 

Refined data: theoretical data generated by assuming E = 125.520 kJ mol-‘, A = 6.667 x lo8 

min-‘, g(a)=[-ln(l-a)]; and &=l,2,4,6,8°Cmin-’ 

T(K) at a: T(K) at 
/3=l”C 
min-’ 

T(K) at 
P=2OC 
e-1 

T(K) at 

Z”l” 

T(K) at 
,L3=6OC 
min-’ 

j3=8OC 
min-’ 

0.1 614.06505 630.53379 647.87588 658.45268 666.16084 
0.2 622.87542 639.80870 657.65209 668.54073 676.47904 
0.3 628.50665 645.74007 663.90762 674.99803 683.08533 
0.4 632.88629 650.35488 688.77657 680.02523 688.22942 
0.5 636.65415 654.32628 672.96800 684.35374 692.65920 
0.6 640.13757 657.99886 676.84518 688.36841 696.75808 
0.7 643.58128 661.63053 680.68020 692.32020 700.81356 
0.8 647.28140 665.53364 684.80303 696.58003 705.17467 
0.9 651.90380 670.41116 689.95679 701.90611 710.62817 
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TABLE 2 

Apparent activation energies evaluated from theoretical data for E = 41.840, 125.520 
and 209.200 kJ mol-‘, A=6.667X108 mm’, &=1,2,4,6,8”C min-’ and g(o)= 

(-ln(l-a))+ 

Alpha 

(a) 

Activation energy 
E (kJ mol-‘) 

Correlation coefficient 
r 

0.1 41.84001 - 1.00000 
0.2 41.83999 - 1 .oOOoo 
0.3 41.83999 - 1.00000 
0.4 41.84001 - 1 .ooOOo 
0.5 41.84001 - 1 .oOOOo 
0.6 41.83999 - 1 .ooOOo 
0.7 41.83999 - 1 .oooOO 
0.8 41.84000 - 1.00000 
0.9 41.84001 - 1 .ooooo 

Average 41.84000 
Standard deviations 0.00001 
Absolute error 0.00000 

0.1 125.51998 
0.2 125.52001 
0.3 125.52001 
0.4 125.51998 
0.5 125.51999 
0.6 125.52000 
0.7 125.51999 
0.8 125.52000 
0.9 125.52000 

- 1.00000 
- 1 .ooooo 
- 1.00000 
- 1 .OOooo 
- 1 .OOooo 
- 1 .OOOoo 
- 1.00000 
- 1.00000 
- 1 .ooOOo 

Average 125.52000 
Standard deviation 0.00001 
Absolute error 0.00000 

0.1 209.20001 
0.2 209.20000 
0.3 209.19999 

0.4 209.20000 

0.5 209.20001 

0.6 209.20001 
0.7 209.19999 
0.8 209.20000 
0.9 209.20000 

- 1.00000 
- 1.00000 
- 1 .OOOoo 
- 1.00000 
- 1.00000 
-1.00000 
- l.OOOOo 
- l.OOOOB 
- 1.00000 

Average 209.20000 
Standard deviation 0.00001 
Absolute error 0.00000 

and R = 8.3143, is the gas constant. Transposing eqn. (10) and taking 
logarithms yields 

log,,(P(X)) = log,,(R/‘E) + log,,(Pi) + logl,( g(aj)) (14) 
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(a) -4.6 

-5.8 

(b) 

1.35 1.40 1.45 1.50 ? 55 1.60 1.70 

Rec~proca! Temperatuce Ii/T) [K-'1 

For c(. 0.1 zo 5 
I 

0.9 in step of 0.1 

and 6. =1,2,3,: / -6 and 8’Clmin. 

-4.6 

-4.8 

-5.0 

-5 2 

-5.4 

-5.6 

-5.8 

1.35 1.40 1.45 1 50 1 55 1.60 1.65 

Roc~procal Temperature (l/T)' (K-l) 

For nj - 0.1 co 0.9 in s.teps of 0.1. 

and 
5; - 1,2,‘,6 and 8*C/min. 

Fig. 1. Is~onversion~ plots obtained using (a) refined and (b) unrefined data. 

For the i th heating rate & = 1, 2, 4, 6 and 8’ C n-k-l, and the assigned 
values of E = 41.840 kJ mol-’ and A = 6.667 X lo8 mi’n-‘, eqn. (14) was 
solved for values of g( ai) at each cyj from 0.1 to 0.9 in steps of 0.1 with 
g( aj) arbitrarily chosen & 
ture values corresponding 
fact that 

g(aj) = (---Iln(l - a,)) 1’2 To obtai; the tempera- . 

to each value of - log,,( P( X)), we utilised the 

P(X) = f”X-’ eexdX= 
c5 

Km2 e-“+‘( E, qj) (15) 
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TABLE 3 

Unrefined data: theoretical data obtained by adding a raqdom error of between -2°C to 
+ 2 o C to the refined data given in Table 1 

a 

0.1 
0.2 
0.3 
0.4 
0.5 

0.6 
0.7 
0.8 
0.9 

T(K) at T(K) at 
P=l°C p=2*c 
min-’ rnin-’ 

T(K) at 
#l3=4OC 
min-’ 

T(K) at 
p=6OC 
min-’ 

T(K) at 
p=8”C 
min-’ 

616.00000 632.50000 648.50000 658.00000 665.50000 
623.50000 641.00000 657.50000 668.00000 675.50000 
630.00000 646.50000 663.50000 674.00000 681.50000 
635.00000 651.00000 668.00000 678.50000 687.00000 
638.50000 654.50000 672.00000 682.50000 691.00000 
641.50000 658.00000 675.50000 687.00000 696.00000 
644.50000 661.50000 679.50000 690.50000 700.50000 
648.00000 665.00000 683.50000 695.50000 705.50000 
652.50000 669.50000 688.00000 702.00000 713.00000 

where $‘( E, rj) is as defined by eqn. (8) above. Taking logs and transpos- 
ing eqn. (15) gives 

x= 2.3o3[ -log&'(x) - 2 log,,x+ log,&‘(E> Tj)] (16) 

Equation (16) was evaluated using an iterative technique to give X and 
hence Tj. 

Two more sets of temperature data were similarly obtained for the same 
mechanism type, at the same heating rates with the same pre-exponential 

0.1 133.84440 - 0.99979 
0.2 130.33073 - 0.99975 

0.3 133.69150 - 0.99999 

0.4 135.18901 - 0.99982 

0.5 135.06386 - 0.99984 
0.6 131.65479 - 0.99961 
0.7 130.10900 - 0.99945 

0.8 127.53769 - 0.99932 
0.9 122.83806 - 0.99771 

TABLE 4 

Apparent isoconversional activation energy evaluated from unrefined data (Table 3) using the 
isoconversional method 

(Y Activation energy 
E (kJ mol-) 

Correlation 
coefficient 
r 

Average 131.13989 
Standard deviation 4.02332 
Absolute error 5.61989 
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factor but different apparent activation energies, namely E = 125.520 kJ 
mol- ’ and 209.200 kJ mol-‘: typical data are given in Table 1 and will be 
referred to as refined data. The results of applying our technique to these 
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data are shown in Table 2. 
To examine the sensitivity to temperature of the kinetic parameters 

calculated using our method, errors ranging from - 2” C to + 2” C were 
randomly introduced into the refined data (Table 1). The resultant data 
(Table 3) will be referred to as unrefined data and may be considered as the 
theoretical equivalent of the experimental data. The result of applying eqn. 
(9) to the unrefined data is given in Table 4 which clearly shows that our 
method is quite sensitive to the accuracy of temperature measurement. 

Typical plots given by the isoconversional method are demonstrated in 
Figs. la and lb for the refined and unrefined data respectively. 

As a check on our method of generating temperature data, we calculated 
the temperature data for g( a,) = -ln(l - oc,), E = 83.680 kJ mol-‘, A = 

1.0 x 1012 mm’, /$ = 1, 2, 5, 10, 20, 50 and 100°C mm-’ and aj = 0.1-0.9 
in steps of 0.1. This was done in order to compare the resulting temperature 
data with that reported by Somasekharan and Kalpagam [27] for the same 
parameters and kinetic mechanism. The data (Table 5) calculated using our 
technique is in excellent agreement with the reported data (Table 6). 

COMPARISON OF KINETIC EQUATIONS USING OUR TECHNIQUE 

Many amendments to the original equation reported by Coats and 
Redfern [25] have appeared in the literature [28-311. Basically all the 
amendments were aimed at obtaining better approximate solution of the 
temperature integral. Since our approach is essentially the same, it was 
imperative to compare our approximation with those already reported. To 
achieve this, the approximations to the temperature integral reported by 
Coats and Redfern [25], Gorbachev [28], Balarin [29], Li [30], Agrawal [31] 
and the one obtained by Zuru [32] using the first five terms in the 
Schlblimch series, have been adapted to give the following equations. When 
put into a standard form, the various approximations give: 

Coats and Redfern 

log” Pi qf (1 - 2Rqj,‘E) ] =“gl”( g($E] - 2.3:R7;1 

Gorbachev 

loi%0 pi 
q:(l/(l + 2RT,j/E)) ) =logr”{ g($E) - 2.30&Tj 

07) 

(18) 
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Balarin 

p; (1 + 4RTj/E)1'2 

T; 

Li 

log” 
i 

4 (I- 6(RTj/EJ2) 
7;j(l- 2Rqj/E) 

Agrawal 

log” 
i 

Pi(l - 5(RTj/E)2) 
7;;(1 - 2Rqj/E) 

Zuru and Whitehead 

E 
2.303RTj 

= log10 
AR 

gCajlE 

logl,j qj&)) =loglo( $)) - 2.3:Rqj 

E - 
2.303RTj 

(19) 

(20) 

(21) 

(24 

where 

O(U) = & - u2 
(u+ 1)(u+ 2) + (u+ 1y;u+ 3) - (u+ ly;U+ 4) 

+ (u+ :p.l.!&+ 5) (23) 

and U is defined as 

U= RT/E (24) 

Equations (17)-(22) were used to calculate the apparent activation energy 
(E) using the data generated with E = 48.840, 125.520 and 209.200 kJ 
mol-’ as well as the unrefined data given in Table 3. The isoconversional 
activation energies obtained for each equation are summarised in Table 7. 

IDENTIFICATION OF PROBABLE REACTION MECHANISM 

In their paper [27], Somasekharan and Kalpagam implied that the trial 
and error technique could be used to calculate both the apparent activation 
energy and pre-exponential factor. The same authors suggested that the 
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TABLE 7 

Apparent isoconversional activation energies evaluated using equations (6) and (22)-(27) with 

theoretical data generated by assuming E = 41.840, 125.520 and 209.200 kJ mol-‘, A = 6.667 
X10* min-’ and pi =l, 2,4, 6 and 8°C min-’ 

Eauation Isoconversional Absolute Standard 
used 

Fatemi/Whitehead 
Agrawal 
Balarin 
Gorbachev 

Li 
Zuru/Whitehead 

Coats/Redfem 

activation 
energy (kJ mol-‘) 

41.84003 
41.83966 
41.83548 
41.84771 

41.83157 
41.81171 
41.87946 

error 
(kJ mol-‘) 

0.00003 
0.00034 

0.00452 
0.00771 
0.00843 

0.02829 
0.03946 

deviation 
(kJ mol-‘) 

0.00001 

0.00044 
0.00081 
0.00056 
0.00142 

0.00210 
0.00433 

Fatemi/Whitehead 125.52000 0.00000 0.00001 
Agrawal 125.52000 0.00000 0.00048 
Balarin 125.50848 0.01152 0.00101 
Gorbachev 125.54159 0.02159 0.00178 
Li 125.49839 0.02161 0.00178 
Zuru/Whitehead 125.44057 0.07943 0.00284 
Coats/Redfern 125.62678 0.10678 0.00585 

Fatemi/Whitehead 209.20000 0.00000 0.00001 
Agrawal 209.20088 0.00088 0.00069 
Balarin 209.18249 0.01751 0.00151 
Li 209.16697 0.03303 0.00268 
Gorbachev 209.23464 0.03464 0.00128 
Zuru/Whitehead 209.07245 0.12755 0.00446 
Coats/Redfern 209.36785 0.16785 0.00940 

With unrefined data 
Zuru/Whitehead 
Li 
Balarin 
Fatemi/Whitehead 
Agrawal 
Gorbachev 
Coats/Redfem 

131.06302 5.54302 4.02720 
131.12086 5.60086 4.02652 
131.12984 5.60984 4.60984 
131.13989 5.61989 4.02332 
131.14080 5.62080 4.02434 
131.16066 5.64066 4.02652 
131.23925 5.71925 4.01371 

probable reaction mechanism could be deduced from the constancy of the 
pre-exponential factor over the heating rates considered. Accordingly, we 
tried to predict the correct reaction mechanism as well as to reproduce the 
kinetic parameters assumed in generating the data shown in Table 1 using 
their suggestion and, in addition, using the technique we have developed. To 
achieve this, eqn. (9) was rearranged to give 

loglo i 
gbj) 

?+'(E, Tj) (25) 

where all symbols retain their earlier definition. 
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TABLE 8 

Table of average apparent activation energies, average pre-exponential factors and standard 
deviations from isoconversional activation energy for the 25 reaction models (see Appendix 
A) from refined data 

Equation Mean activation 
No. energy (kJ mol-‘) 

Mean pre- 
exponential 
factor (min-‘) 

Deviation from 
isoconversional 
energy (kJ mol-‘) 

2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

39.83782 0.54372E + 02 95.79561 
55.51900 0.10658E + 04 78.26360 
87.89625 0.45241E + 06 42.06472 

185.93886 0.29421E + 14 67.55049 
284.18442 O.l9370E+ 22 177.39265 
382.47751 O.l4146E+ 30 287.28794 
220.00227 0.20943E + 17 105.63464 
232.96332 0.25462E + 18 120.12557 
207.86643 0.20191E+ 16 92.06632 
498.49346 0.51224E-t 40 416.99804 
261.44743 0.61731E+20 151.97185 
310.65348 0.82043E + 24 206.98602 
367.24165 0.46197E + 29 270.26367 
170.79410 0.29968E + 13 50.61810 
125.52000 0.66670E + 09 0.00001 
80.36795 0.14262E + 06 50.48163 
57.97088 0.20308E + 04 75.52232 

423.87691 0.22473E + 33 333.57399 
441.20753 0.21803E + 34 352.95026 
476.60920 0.21377E + 37 392.53064 
364.53658 O.l4637E+ 27 256.04895 
597.54664 0.23512E+47 527.74314 
111.31581 0.24765E + 08 15.88080 
70.95686 O.l5651E+05 61.00355 

345.56840 O.l1183E+26 246.02220 

Using essentially the same iteration technique described earlier, the ap- 
parent activation energies (E) and pre-exponential factors for the 25 differ- 
ent analytical forms of g( aj) given in the Appendix were evaluated using 
eqn. (25) above. For each of the 25 reaction mechanisms, the apparent 
activation energy corresponding to each ith heating rate, pi = 1, 2, 4, 6 and 
8°C mini, was evaluated. For each mechanism type, the standard devia- 
tion of the activation energies (calculated for each heating rate) was com- 
puted from the isoconversional energy (not from their mean). The results 
obtained for the refined and unrefined data are given in Tables 8 and 9 
respectively. 

DISCUSSION 

Although an accuracy of up to two decimal places in activation energy is 
hardly practicable in solid state kinetics, nevertheless, as we are using 
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TABLE 9 

Table of average apparent activation energies, average pre-exponential factors and standard 
deviations from isoconversional activation energy for 25 reaction models (Appendix A) from 
unrefined data 

Equation Mean activation 
No. energy (kJ mol-‘) 

1 40.75309 
2 56.77021 
3 89.79089 
4 189.74565 
5 289.90035 
6 390.10193 
7 224.75768 
8 238.09126 
9 212.27839 

10 511.78474 
11 267.41126 
12 318.10136 
13 376.43336 
14 174.76547 
15 128.49420 
16 82.34221 
17 59.43965 
18 432.62637 
19 450.45296 
20 486.87548 
21 361.50982 
22 611.40238 
23 113.87173 
24 72.65136 
25 352.33372 

Mean pre- Deviation from 
exponential isoconversional 
factor (min-‘) energy (kJ mol-‘) 

0.63571E + 02 101.08653 
O.l4317E+04 83.22407 
0.84672E + 06 46.53997 
O.l8531E+ 15 66.37204 
0.40309E + 23 178.19890 
0.86661E+ 31 290.28594 
0.20226E + 18 105.36023 
0.28823E + 19 120.22516 
0.16772E + 17 91.43956 
0.10216E + 43 426.16144 
0.98302E + 21 152.96072 
0.22993E + 26 209.59910 
0.24007E + 31 274.80682 
0.15649E-t 14 49.62022 
0.19769E + 10 7.49037 
0.25105E +06 54.75324 
0.28596E + 04 80.23795 
0.21144E + 35 337.83467 
0.24462E + 36 357.76708 
0.34211E+ 39 398.49473 
0.66525E + 28 258.30824 
O.l2272E+ 50 537.75397 
0.61535E+08 20.31679 
0.24796E + 05 65.52987 
0.46111E+ 27 248.04640 

theoretical data, we have chosen to quote our results to five decimal places 
in order to demonstrate the accuracy and internal consistency of our 
calculation method. 

Inspection of the results given in Table 2 clearly shows the accuracy and 
consistency of our calculation technique over all ranges of X( E/RT) 
considered. 

The isoconversional activation energies evaluated using eqns. (9) and 
(17)-(22) from the data generated with E = 41.840, 125.520 and 209.200 kJ 
mall’, and those calculated from the unrefined data, are all summarised in 
Table 7. It is obvious from these results that all the approximations lead to 
practically the same apparent activation energies to the nearest kilojoule. 
This reinforces Gorbachev’s [33] suggestion that there is little value in trying 
to find more accurate approximations to the temperature integral. Neverthe- 



less, without unduly overemphasising the slight differences in isoconver- 
sional activation energies between the equations, we wish to observe that 
while the Fatemi and Whitehead approximation leads to the most accurate 
and precise isoconversional activation energy with the refined temperature 
data, the Zuru and Whitehead approximation leads to the best result with 

TABLE 10 

Extract of the kinetic parameters obtained from the refined data (Table 1) by applying the 
trial and error technique using the 25 reaction models given in Appendix A 

Equation 
No. 

Heating Activation Pre-exponential Correlation 
rate /I energy factor coefficient 
(“C mm-‘) E (kJ mol-‘) A (mm-‘) r 

11 1.0 260.98578 O.l4441E+21 - 1 .ooooo 
11 2.0 261.24515 0.75878E + 20 - 1.00000 
11 4.0 261.51780 0.39914E + 20 - 1 .ooooo 
11 6.0 261.68380 0.27426E + 20 - 1.00000 
11 8.0 261.80463 0.21021E+ 20 - 1 .ooooo 

Average 261.44743 0.61731E+ 20 
Standard deviation 151.97185 0.50859E + 20 
Absolute error 135.92743 0.61731E+20 

14 1.0 170.64356 0.42112E+ 13 - 1.00000 
14 2.0 170.72819 0.33975E+ 13 - 1 .ooooo 
14 4.0 170.81709 0.27420E + 13 - 1.00000 
14 6.0 170.87117 0.24193E+ 13 - 1 .ooooo 
14 8.0 170.91050 0.22138E+ 13 - 1.00000 

Average 170.79410 0.29968E + 13 
Standard deviation 50.61810 0.81343E+ 12 
Absolute error 45.27410 0.29961E+ 13 

15 1.0 125.51999 0.66670E + 09 - 1 .ooooo 
15 2.0 125.52000 0.6667OE + 09 - 1.00000 
15 4.0 125.52001 0.6667OE + 09 - 1 .ooooo 
15 6.0 125.52001 0.6667OE + 09 - 1.00000 
15 8.0 125.52000 0.66670E + 09 - 1.00000 

Average 125.52000 0.66670E + 09 
Standard deviation 0.00001 0.10832E + 04 
Absolute error 0.00000 0.12894E + 03 

16 1.0 80.50408 0.95911E + 05 - 1.00000 
16 2.0 80.42714 O.l1901E+06 - 1 .ooooo 
16 4.0 80.34691 0.14763E + 06 - 1.00000 
16 6.0 80.29839 O.l6745E+ 06 - 1 .ooooo 
16 8.0 80.26322 O.l8310E+06 - 1.00000 

Average 80.36795 O.l4262E+06 
Standard deviation 50.48163 0.35424E + 05 
Absolute error 45.15205 0.66656E + 09 
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the unrefined data. This observation suggests that the SchlGmilch expansion 
of the temperature integral may lead to comparatively more accurate activa- 
tion energies with experimental data than the semi-divergent asymptotic 
expansion: a view already held by some authors [34-361. 

Table 8 contains the kinetic parameters obtained when eqn. (25) was 
applied to the refined data with the 25 different analytical forms of g( aj) 

TABLE 11 

Extract of the kinetic parameters obtained from the unrefined data (Table 1) by applying the 
trial and error technique using the 25 reaction models given in Appendix A 

Equation 
No. 

11 
11 
11 
11 
11 

Heating 
rate /3 
(“C mm-‘) 

1.0 
2.0 
4.0 
6.0 
8.0 

Activation energy 
E (kJ mol-‘) 

268.30616 
282.00497 
276.98337 
262.59687 
247.16493 

Pre-exponential 
factor 
A (mm’) 

O.S3263E+ 21 
0.36291E + 22 
0.71691E+ 21 
0.34831E + 20 
0.16097E + 19 

Average 267.41126 0.98302E+ 21 
Standard deviation 152.96060 O.l5114E+ 22 
Absolute error 141.89126 0.98302E + 21 

14 1.0 175.51418 0.10124E + 14 
14 2.0 184.55347 0.45753E + 14 
14 4.0 181.12095 O.l9133E+ 14 
14 6.0 171.48076 0.28409E + 13 
14 8.0 161.15798 0.39244E + 12 

Average 174.76547 O.l5649E+ 14 
Standard deviation 49.62010 0.18342E + 14 
Absolute error 49.24547 O.l5648E+ 14 

15 1.0 129.16450 O.l2936E+ 10 
15 2.0 135.87411 0.47603E + 10 
15 4.0 133.23966 0.28977E+ 10 
15 6.0 125.97760 0.75274E + 09 
15 8.0 118.21513 0.17996E + 09 

Average 128.49420 0.19769E - 10 
Standard deviation 7.49042 O.l8567E+ 10 
Absolute error 2.97420 O.l3102E+ 10 

16 1.0 82.91842 O.l5005E+ 06 
16 2.0 87.29745 0.44926E + 06 
16 4.0 85.47112 0.39870E + 06 
16 6.0 80.60305 O.l8175E+06 
16 8.0 75.42102 0.75500E + 05 

Average 82.34221 0.25105E+ 06 
Standard deviation 54.75336 0.16348E + 06 
Absolute error 43.17779 0.66645E + 09 

Correlation 
coefficient 
r 

- 0.99896 
- 0.99997 
- 0.99992 
- 0.99886 
- 0.99787 

- 0.99893 
- 0.99997 
- 0.99991 
- 0.99881 
- 0.99776 

- 0.99889 
- 0.99997 
- 0.99991 
- 0.99875 
- 0.99765 

- 0.99881 
- 0.99997 
- 0.99990 
- 0.99862 
- 0.99740 
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given in Appendix A. A more informative tabulation of the results is given 
in Table 10. Careful scrutiny of the results reveals the following observa- 
tions. 

(a) Of the 25 mechanism types tried, only the appropriate analytical form, 
namely, g( ffj) = ( - ln(1 - ff))iL2, reproduced the assumed kinetic parame- 
ters, i.e. E = 125.520 kJ mol-’ and A = 6.667 x 10' mm’. 

(b) All the 25 reaction mechanisms gave distinctly different apparent 
activation energies. 

(c) The lowest standard deviation from the isoconversional activation 
energy is associated with mechanism 15, g(a) = ( - ln(l - (r))‘/2, which was 
the reaction mechanism used in generating the data. 

(d) Of the 25 mecha~sms considered, m~h~isms 11,14,15 and 16 gave 
a correlation coefficient (r) of - 1.00000, as shown in Table 10. 

(e) Also, mechanisms 14, 15 and 16 all gave reasonably constant pre-ex- 
ponential factors over all the heating rates considered. 

The kinetic parameters evaluated from the unrefined data are displayed in 
Tables 9 and 11. Inspection of these tables reveals the same trend as 
observed above with the refined data. In addition it can be seen that the 
random error has distorted the pre-exponential factor by more than an order 
of magnitude and introduced an absolute error of about 3.0 kJ mol-’ into 
the apparent activation energy. From the above observations, we have 
extracted the following findings. 

(i) The isoconversional method is capable of producing the apparent 
activation energy without the necessity of assuming the analytical form of 
the conversion function. 

(ii) Only in the case of the appropriate reaction m~h~isrn did the trial 
and error method give apparent activation energies which were in good 
agreement with the values obtained using the isoconversional technique. 

(iii) As reported by other workers [37-401, the correlation coefficient is 
not a sufficient criterion for judging the ‘best’ mechanism f(a). 

(iv) Contrary to the claim by Somasekharan and Kalpagam [27], con- 
stancy of the pre-exponential factor is not unique to one mechanism type. 

PROPOSED METHOD FOR THE EVALUATION OF KINETIC PARAMETERS AND 
DETERMINATION OF REACTION MECHANISM 

Because all the mechanism types tried gave different apparent activation 
energies with the trial and error method and only the ‘true’ reaction 
mechanism gave activation energies in good agreement with values obtained 
using the isoconversional method, we strongly feel that this agreement could 
be utilised to identify the most probable reaction mechanism and to thus 
obtain a most probable pre-exponential factor in addition to the apparent 
activation energy. To achieve this we recommend the following steps. 
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(a) Sufficient data should be collected at different heating rates to warrant 
a straight line plot. 

(b) The isoconversional method should be used, without reference to any 
mechanism, to calculate the apparent activation energies corresponding to 
various degrees of conversion (cr) at suitable intervals and the mean 
evaluated. The mean was referred to as the isoconversional activation energy 
in the text. 

(c) The trial and error technique should then be applied to evaluate the 
apparent activation energies corresponding to each heating rate for various 
reaction mechanisms. 

(d) For each mechanism type, the standard deviation of the apparent 
activation energies evaluated for each heating rate from the isoconversional 
activation energy (not their mean) should be computed. 

Provided the reaction is essentially isokinetic over all heating rates and 
temperature range covered, the reaction mechanism that gave the least 
standard deviation from the isoconversional activation energy may be con- 
sidered as the most probable mechanism type. Once the most probable 
reaction mechanism has been established, the associated kinetic parameters 
could be regarded as the apparent activation energy and pre-exponential 
factor for the process. 

CONCLUSION 

The apparent activation energy evaluated using the isoconversional 
method has proved a successful reference for the determination of the most 
probable reaction mechanism in this theoretical investigation. The constancy 
of the pre-exponential factor and the correlation coefficient cannot be used 
as sufficient criteria for distinguishing between some reaction mechanisms. 
We wish to reiterate that the reported method may not apply if: (i) the 
mechanism of the process alters with changes in heating rate; and (ii) the 
reaction is not isokinetic over the temperature range considered. 
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APPENDIX A 

Reaction mechanisms used with trial and error method 

Corresponding Mechanism type 
number 

1 

2 

3 
4 

5 
6 

7 

8 

9 
10 
11 

12 
13 

14 

15 

16 

17 
18 

19 

20 

21 

22 

23 

24 

25 

2.q 1 - (1 - a) ‘} 

3*0(1 -(f - a)$} 

1.5{1 - (1 - a)$ 
OS{l/(l - a)2 - I} 
- In(l - a) 

2.0(1/(1 -a+1) 

a/u - a) 
{-ln(l-a)}S 

{-In(l-a)}: 

{-ln(l-a)}f 

{-ln(l-a)}: 
(1 - a)ln(l - a) -I- a 

1.5{ 1 - (2/3)a - (I - a) $1 

1.5{1 - (1 - a)f}2 

((1 -t-a)f-l}2 
((1 -t-a)-5-1)2 

(1 -(l-a)+}+ 

(l-(l-a)~}f 

{(l-ka)f-1}2 
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